Using Computer Simulations to Explore
Wildlife Population Responses to Multiple
Interacting Disturbances 1)
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The Problem

Conservation biology involves forecasting, and
forecasting necessitates the use of models.

The use of models (for PVAs, recovery plans, etc.)
introduces a number of complications...

" Model selection

" Model sophistication
" Realism vs. complexity
= Defensibility

= Usability



The Need to Address Real-World Problems
Drives the Development of New Models

Threatened Species. Recovery planning must
balance realism with defensibility.

Zoonotic Disease. Forecasting spread rates and
impacts requires sophisticated modeling tools.

Off-Target Pesticide Impacts. Vary based on
complex interactions with other stressors.

Conservation Genetics. Future models must be
both spatially-explicit and individual-based.



Model Trade-Offs




Complications
(that | deal with...)

Landscapes. They are dynamic; structure matters;
features change with life history

Populations. They have complex, diverse life
histories, and can interact

Disturbances. Can vary in space and time; there
can be lots of them; they often interact

Methodology. Must be defensible and usable, plus
have value to decision-makers, etc.



Some Classes of Models

I’'m going to draw examples from the
application of a specific spatially-explicit and
individual-based modeling tool. But there
are lots of alternative model structures...

* Non-spatial models
e Spatially-implicit models

* Population models (not individual-based)



Non-Spatial Models

Advantages VoD — M

" Lots of analytic tools w o m

= Can get a solution NH Y

= Easy to communicate sy my, my s
. al]er I—N

Disadvantages a3

= Constrain realism
= Solutions can be hard to obtain



Spatially-Implicit Models

Examples

= Patch occupancy models
= Cellular automata Source Sink
= Metapopulation models

Advantages I \

= Significantly simpler than

fully spatial models sink | < .

Disadvantages
= Limits the influence that landscape structure can
have on the model dynamics




Spatially-Explicit Models

Examples
= GIS-based models
= NetLogo
= HexSim

Advantages
= Biological / ecological realism

Disadvantages
= Additional complexity



Population Models

Examples
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Advantages

" Models are well-defined and parameter
space is finite

Disadvantages

= Models become increasingly complex and
hard to understand as realism is added (even
when added in limited quantities)



Individual-Based Models

Examples
= Vortex

= CDPop
= HexSim

Advantages
= Much more mechanistic

Disadvantages
= More work to construct and parameterize



Spatially-Explicit and
Individual-Based Models

" Simulation Viewer : Workspace : Competition (50-50) | movement gm
File  View

= Many have been developed,
but few are carefully designed,
flexible, and reusable

= This class of models make it
possible to simulate impacts
on a population of multiple
interacting stressors

= This class of models is
necessary for developing realistic simulations
of disease spread, landscape genetics, and
other dynamic spatially processes



exSim Model

Modeling
framework

Range of
applications

Trait-based design

Multiple interacting
stressors

Modern interface

& rossm verson 2

HexSim  Scenario  About

Workspace | BB-0Mochytid) X BB-0

Simulation Parameters
Number of Time Steps [l

StartLoggingatStep
Stochasticity Model Random

Populations

Rana muscosa

Spatial Data

EventSequence

& 000 ]

- @ Dispersal Mortality

[ Environmental Zoospores

Type
Survival

Floater Creation
Introduction

Accumulate

D¢
¢
¢
¢
¢
N
N
N

Transition
Movement
Movement

Movement

Reproduction
Generated Hexmap
Generated Hexmap

Accumulate

Zoospore Induced Mortality

Survival QOverwinter Survival

Prepare for Movement
Add Infected Adults
Add Infected Adults
Add Infected Adults
Adults Forage
Subadults Forage
Tadpoles Forage

Tadpole Creation

Map Frogs and Chytrid

Zoospaores in Environment
Zoospores on Animals

0 - Stage Class

1 - Infection Status

2 - Stage Class x Infection Status

N 0000000000 |

Current Workspace is C:\Users\Nathan\Documents\Work\Research\Disease Ecology\Chytrid\Workspaces\Barret Basin




HexSim Mechanics

-- A Hypothetical Example --

Landscape structure and population size together
limit resource acquisition

Resource acquisition and disturbance

together control fitness

—

Fitness and disease
control vital rates

Disturbance

Class

Resource
Class

Roads impact the
movement process

Movement mediates
disease spread

Disease spread controls
population size

Fitness
Class

Landscape
Structure

Landscape
Barriers
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Disease
Status
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Survival
Rate

Movement
Process

Population
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Size




Examples I’ll Discuss Today

" Threatened Species. HexSim was used in the
recovery planning and critical habitat
designation for the Northern Spotted Owl.

= Wildlife Disease. Frog / chytrid model is in
development. Other models are on the way.

= Conservation Genetics. HexSim will make
more sophisticated studies possible.



Northern Spotted Owls

Revised Recovery Plan
for the Northern Spotted Owl
(Strix occidentalis caurina)
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The Planning &
Modeling Process
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(MaxEnt)

Conservation
Prioritization
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HexSim Spotted Owl Model

Survival

Increment

Age

Acquire
Resources

Floater
Prospecting

Establish
Home Ranges

Set Barred
Owl Presence
/ Absence

Disperse
Recruits

Reproduction

HexSim  Scenario  About
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Time Steps / Replicate 1000 Type Name
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Stochasticity Model Random
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Populations
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Accumulate Identify Territory Holders (a)
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Current Workspace is C\Users\Nathan\Documents\Work\Research\Spotted Owls\Workspace
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Measuring Landscape Connectivity

( Location A )4

Identify Locations of ¥ o
Interest o * X
Set Up HexSim to ( Location B )‘_‘lq)
Record Locations |

. . Deaths < ﬁ » Births
Run Simulation + ‘
Run a HexSim ( “ocfn® ) €
Location-Stratified ——

Projection Matrix
Report

Location A| Location B | Location C
Location A L(a+d)/EN
Location B Z(o+yx)/EN
Location C Z(Bp+e)/EN

To

Assess Connectivity
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Spotted Owl
Connectivity
Experiment

Begin with an
empty landscape

Add 100 spotted
owls in the south

Run Simulation for
2500 years

Record owl density

Smooth density
data and construct
the video



Frogs and the Chytrid Fungus

Enzootic and epizootic dynamics of the chytrid fungal

pathogen of amphibians
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from density-dependent host-pathogen dynamics. The model also
shows that persistence of Bdis enhanced by the long-dived tadpole
stage that characterim these two frog spedes, and by nonhost
Bd reservoirs.
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emerging infectious diseats | ha-pathagen dynamics

hytridiomycmis, caused by the fungal pathogen Baracho
Cd.,a.-.... dendmobatidis (Bd), has been eslled the “worst in-
fectious disese ever reconded among vertebrates in terms of the
number of species impacted, and its propensity to drive them to
extination” (1). Since ot was first identified in the late 1990k (2, 3),
Bd has been found in almost every region in which researchers
have sesrched hilmw neaﬂyﬂohl in its distribution, and i
has been implicated in & ic dedines in amphili

or fungal Here we propose that these
types of differences might not be necessary to explain the ob-
served varying outcomes of infection.

Mountain yellow-legged frogs occur only in high-elevation
Iakes and streams (sbove 1,500 m) in California. All stages of the
frogs are aquatic, and in the Sierra Nevada, frogs spend 8-9
months of the year overwintering under ice. The tadpole stage &
unusually long-lived, lasting 1-4 years. Although once sbundant,
these frogs have dissppeared from most of their historic range
during the past several decades (). The spread of Bd s amgor
factor driving this decline (6, 16), with R muscosa known 10 be
infected with Bd since st lesst the 1970s (19).

Bd infects k ired tisues of hi b ifically the
skin of n&aﬂm‘mpmoﬂmnp
(3, 21). Bdis transmitted vis an aquatic flagellated zoospore (21,
). Zompores are thought to infect cells within the stratum
granulosum either directly or via a germ tube and then develop
into sporangis (3, 21). After a temperature-de pendent number
of da, the sp releases jpores through a discharge
ppﬂn (21, 23). kerpr (21) showed through electron micres-
@py that discharge papillae usually point to the skin surface,

suggesting that most 2008pores are released to the outer surface
of the skin, although some zoospores might stay within skin
layers and potentially cause self-reinfection. Wheress other
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ulations worldwide (4, 5). One of the most striking features of
this pathogen, however, i the varishility in outcome of infection
that has been olserved among spedes, and among populations
within & species Chytridiomycosis leads 10 the rapid death of
mmm:oamwx(za.nmmum:mmr
specis develop only minor infections and suffer littke or no
negative effects (8 9). A number of factors, including tempers-
ture (10), innate defemes (11, 12), habitst (13, 14), and host life
history traits (15), have been demonstrated to contribute to the
variable outcomes of Bd infection.

such a stage has not yet been identified in Bd
(!hlsae ref. 24). Bd usually has litde derectsble negative effect
on infected tadpoles (25, 26), but Bd can lead to the death of
postmetamorphic snimals of many species within weeks of in-
fction (2, 6, 27).

Here we investigate how infected R gerrae populations are
sble 1o persist with Bd We present a Syear field study that
reveals that adults in persistent populations are infected with
only low-level infections (low Bd load), and individuals fre-
quently lose and regain the infection. This & in stark contrast to

Bds having 2 impact on ions of
frogs in the mountain yellow-legged frog species complex (Rana
muscosa and R derrae) in partsof the Sierra Nevada Mountsing

of California (6, 16). In ia and Kings Canyon National
Parks, we have documented the first sppearance of Bd in many
watersheds, resulting in the rapid dedine of the frog populations
., |6)T‘hemqniyofl]m population crashes have caused the
ions in the affected areas. How-
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HexSim Model of the Barrett

Basin, CA Study Area

e

HexSim Version 2.3
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Current Workspace is C:\Users\Nathan\Documents\Work\Research\Disease Ecology\Chytrid\Workspaces\Barret Basin




Adult mortality is 10% / year

Tadpole & juvenile mortality is 30% / year

To increase computation speed, we

use “meta-tadpoles”

Movement rules vary
based on stage class

Subadults need resources
in order to mature

Cytrid added at TS-60
Fungal exchange is
to and from environment

Fungus experiences
mortality both on frogs
and in the water

Daily Yearly Daily Yearly

Simulation

Structure
Overwinter Multiple Census
Mortality Events
Zoospore-Induced Zoospore
Mortality Exchange
Tadpole Adults
Maturation Reproduce
Age-Stratified Subadult
Movement Maturation

T

Alreq

Alreq  A[1edx  Aqreq



Observed Probability (%)

Model Verification

7.5 —
Probabilities Shown
5 — Sum to 99.975%
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Displacement
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Model Verification




Fungal
Dynamics



Chytrid’s Impact on Population Size
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Next Steps

A Between year dynamics Within year dynamics
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Landscape Genetics

Each individual is assighed a genome
Populations can have any number of loci
Each locus can have any number of alleles
Users define initial allele spatial distributions

Map distance may be used to simulate
chromosome crossover

Traits can be neutral or adaptive

Mutation events modify individual genotype



Example: Predators & Prey

Two interacting populations

Predators and prey use different mating schemes
Prey live in colonies, predators are solitary
Predators disperse towards prey

Predator capture efficiency is controlled through
a heritable trait

Capture efficiency influences both survival and
reproduction

Semi-random mutations alter the capture
efficiency gene



HexSim Predator-Prey Model

@' HexSim Version 2
HexSim  Scenario  About

Workspace Predator-Prey X |

Simulation Parameters Event Sequence
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Start Logging atStep 0
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e
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Current Workspace is C\Users\Nathan\Documents\Work\Research\Landscape Genetics\Workspaces\Predator-Prey




Population Size

Population Fluctuations

100000

— Prey
— Predators

10000 r‘
1000 ﬂ ﬂ/\/WWM

-l

OoT———T 7T 1T T T 1
0 200 400 600 800 1000
Time Step




Selective Pressure Ensures High Capture Efficiency

Capture Efficiency (smoothed)
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File View
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In Summary

The use of sophisticated simulation models in Conservation
Biology and other disciplines is going to increase with time...

In particular, new spatially-explicit, individual-based models
are creating opportunities to improve conservation theory.

Its important that users of these tools make an effort to:

= Use the simplest models that are capable of capturing
critical processes

= Ensure that the models they construct are defensible

= Conduct model comparisons

= Contribute to the model development process
(the model builders need your expertise)



